Invasive species triggers a massive loss of ecosystem services through a trophic cascade.

نویسندگان

  • Jake R Walsh
  • Stephen R Carpenter
  • M Jake Vander Zanden
چکیده

Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can Climate Change Trigger Massive Diversity Cascades in Terrestrial Ecosystems

We summarize research on diversity and trophic interactions under a trophic cascades model that is reframed and expanded from the traditional biomassor abundancebased indirect effects and discuss the response of such ―diversity cascades‖ to climate change and other global change parameters. The studies we summarize encompass dynamic processes in which species richness or evenness in one trophic...

متن کامل

Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated.

It is widely recognized that trophic interactions structure ecological communities, but their effects are usually only demonstrated on a small scale. As a result, landscape-level documentations of trophic cascades that alter entire communities are scarce. Islands invaded by animals provide natural experiment opportunities both to measure general trophic effects across large spatial scales and t...

متن کامل

Keystone effects of an alien top-predator stem extinctions of native mammals.

Alien predators can have catastrophic effects on ecosystems and are thought to be much more harmful to biodiversity than their native counterparts. However, trophic cascade theory and the mesopredator release hypothesis predict that the removal of top predators will result in the reorganization of trophic webs and loss of biodiversity. Using field data collected throughout arid Australia, we pr...

متن کامل

Indirect effects of invasive Burmese pythons on ecosystems in southern Florida

1. Invasive predators can dramatically alter ecosystems through both direct predation and indirect effects such as tropic cascades. However, most examples of top-down effects of invasive predators in terrestrial systems stem from islands or similar low-diversity ecosystems. Snakes are an emerging guild of damaging invasive predators, but demonstration of ecosystem-level impacts of invasive snak...

متن کامل

Research Article: Trophic dynamics analysis and ecosystem structure for some fish species of northern Oman Sea

In the present study, a trophic structure model for some fish species of the northern Oman Sea is developed through using mass balance modeling software, Ecopath with Ecosim (EwE). In this model, we simulated 16 functional groups spread across an area of 3998.20 km2 from 2017 to 2018. Mean trophic level in the area of the present study was 3.49. Values calculated for system omnivory and connect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 15  شماره 

صفحات  -

تاریخ انتشار 2016